

© 2015 Microsoft Corporation.

All rights reserved.

Azure Machine Learning and Azure App Service

Churn Prediction and Intervention

1

Churn is a term employed when consumers stop using a good or service. It is seen across a

number of industries, and in many cases, companies devote additional resources to stop a

customer from leaving. With online computer games, for example, substantial data is available

to analyze individual and collective player behavior to help predict when a particular gamer may

leave. Game creators may even take their capabilities a step further and intervene in-game to

incentivize players to continue gaming. Additional bonuses, power-ups, and numerous other

tactics are common methods employed to keep such players involved.

The Super Family game is a basic web app about a family of super

heroes. Heroes battle villains, but there is a twist—the game uses the

results of a predictive model to account for potential churn, and it

provides a new helmet to a player if a churn event is imminent. If

churn is not likely, the game does not provide the bonus.

You will have the opportunity to alter your machine learning

experiment to try to make your churn prediction as accurate as

possible. In the real world, misclassification can be costly. Imagine if a company provided a free

month of service or a hotel provided a free stay, when the customer was not actually

considering alternative services. Money or other resources would have been employed for no

reason. The goal in this case is to reduce such false positives—when a churn event is predicted,

but in reality, the consumer is not likely to churn.

Objectives

This exercise is split into six activities that will help you gain an understanding of churn analysis

and how to intervene to try to prevent churn. You will learn the basic process used to train, score

and evaluate a predictive churn model. The first four activities utilize Azure Machine Learning

1 – Prepare data for a churn experiment page 3

2 – Train and score a model using Support Vector Machines page 13

3 – Train and score a model using Boosted Decision Trees page 24

4 – Publish your churn experiment as a web service page 31

5 – Create your Super Family game page 35

6 – Publish and play the Super Family game page 41

Overview

2

(Azure ML) to prepare a model to determine whether or not a player may churn. The final two

activities use Azure App Service and involve deploying a simple ASP.NET Super Family game

that invokes your Azure ML model. Based on the prediction returned by Azure ML, in-game

behavior changes to incentivize a player to continue playing. Using different selection of

features and changes to model parameters, how accurate can you become at predicting churn?

Requirements/Prerequisites

1. A Microsoft account is required to access an Azure Machine Learning workspace. If you

do not already have a Microsoft account, you can obtain one for free by following the

link below:

https://www.microsoft.com/en-us/account/default.aspx

2. An Azure subscription is required to use Azure App Service and the associated

publishing features of Visual Studio. You will be provided an Azure Pass and activation

instructions via e-mail after signing up for the challenge.

https://azure.microsoft.com/

3. Visual Studio 2015 is required for the Super Family ASP.NET web app project. The free

Visual Studio Community version is available using the link below:

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

4. The Azure SDK version 2.8.1 is required to publish your Super Family app to Azure App

Service using Visual Studio. The Azure SDK can be installed using the Web Platform

Installer.

https://www.microsoft.com/web/downloads/platform.aspx

Acknowledgements

This lab was adapted from original content created by Wee Hyong Tok, Ph.D., Senior Program

Manager on the Azure Machine Learning team at Microsoft.

https://www.microsoft.com/en-us/account/default.aspx
https://azure.microsoft.com/
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.microsoft.com/web/downloads/platform.aspx

3

In order to predict when a gamer may churn and provide incentive for them to stay, you will

start by creating an experiment in Azure Machine Learning. This activity covers how to setup an

experiment in Azure ML Studio, read a dataset, and perform basic data preparation before it

can be used by a machine learning algorithm.

1. Go to https://studio.azureml.net and Sign In using the Microsoft Account you used to

activate your Microsoft Azure Pass.

2. After signing in, if this is your first time accessing Azure ML, you may see an option to

Take a Tour. Select Not Now if applicable.

Activity 1: Prepare Data for a Churn Experiment

https://studio.azureml.net/

4

3. Select the option for Blank Experiment. NOTE: You may need to click New first.

4. Click on the experiment title at the top and rename it from “Experiment created on

[current date]” to Super Family Churn. The game scenario that you will create in a later

activity will be Super Family.

5

5. In the selection panel on the left, you will see a number of menu options relating to

functionality in Azure ML. Many of the options will not be relevant for this experiment, so

you will rely on the search functionality rather than browsing. In the search box, type

reader, and you should see the Reader option appear under Data Input and Output.

6. Click on the Reader option under Data Input and Output, then drag it into your

experiment where it says Drag Items Here.

7. At this point, click the Save icon on the bottom bar, then select the Save option. After a

few seconds, you should see a timestamp noting that the experiment has been saved.

8. In the Properties panel for the Reader, you will add your data input. The input is available

online in CSV (comma-separated) format. It contains historical attributes that can be

used to train your machine learning models as well as a Churn column noting whether or

not a gamer churned in reality.

a. For Data source, select Web URL via HTTP.

6

b. For URL, copy the following link and paste it into the URL field:

https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/Su

perFamilyTraining.csv

c. For Data format, select CSV.

d. Check the box for CSV or TSV has headers (NOTE: this selection is not optional

and having it checked is important for future steps).

9. Select Run in the bottom bar to run the experiment. Running it now will allow you to

visualize the new CSV dataset in Azure ML.

10. After the experiment runs, you should see a green checkmark next to your Reader

module. Click on the small circle at the bottom of the Reader module and select the

option to Visualize.

https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/SuperFamilyTraining.csv
https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/SuperFamilyTraining.csv

7

11. The window that opens shows a preview of all of the data that is available to use for

predicting whether a gamer will churn. Note that the training dataset contains 408 rows

and 19 columns. In each column, a small histogram appears showing how the data is

distributed. Scroll to the right until you see the Churn column, and then select it. Note

how more detailed Statistics are available. Because gamers will either churn or not churn,

this data is represented as either a zero (false) or one (true). A “1” represents a churn

event, and looking at the Mean of 0.1275, it appears that one in eight gamers churned in

our training dataset. Browse the data as desired, and then click the X in the top right

corner to return to the experiment when ready.

12. In the selection panel, search for metadata, then drag the Metadata Editor into the

experiment. This module will allow you to manage how the training data is described.

8

13. When you click off of the new Metadata Editor module, notice that it has a red

exclamation point. Hovering over the warning allows you to see that a value is required.

This warning appears because the Metadata Editor does not have any data input from

the Reader!

14. Hover over the circle atop the Metadata Editor and note that it is requesting a Dataset

input.

15. Now, click on the circle under Reader, and drag the arrow to the circle above Metadata

Editor. This takes the dataset as output from your Reader and makes it available to the

Metadata Editor as input.

9

16. Select Metadata Editor, and in the Properties panel on the right, click Launch column

selector. In the new window, select the Churn column from the list, then click the OK

button.

17. Back in Properties, change the option for Fields to Label.

18. In the selection panel, search for project, drag the Project Columns module into the

experiment, and drag the output from Metadata Editor into the input circle for Project

Columns. This new module allows you to filter the dataset and select which of the

attributes in the training dataset will be used (out of the 19 feature columns).

10

19. Select Project Columns, and in the Properties panel on the right, click Launch column

selector. In the new window, select the Age, NegativeTweetLast30Days,

PositiveTweetLast30Days, IsMarried, DurationMinutes, TotalVirtualCurrency, State,

and Churn columns from the list. Click the OK button when done.

20. In the selection panel, search for smote, drag the SMOTE module into the experiment,

and drag the output from Project Columns into the input circle for SMOTE.

11

21. Select the SMOTE module, and in the Properties

panel on the right, select Launch column

selector. Change the included columns option

from all labels to column names, select the Churn

column, and click OK.

22. Back in the Properties panel, change the SMOTE percentage to 200 and Number of

nearest neighbors to 2. Leave Random seed as 0.

23. At this stage, you took an initial dataset containing past player behavior and selected a

subset of features that will be used later for prediction. You have prepared your data and

are ready to work with machine learning models. Save the experiment.

“SMOTE” stands for Synthetic

Minority Oversampling Technique and is

a way to strategically increase your

sample size (http://bit.ly/1PT2Vqt)

http://bit.ly/1PT2Vqt
http://bit.ly/1PT2Vqt

12

Before using machine learning algorithms in Azure ML, you need to make good initial decisions about your data.

The sample game data is fairly straightforward, but in reality, it may take a lot of work to obtain and clean your

dataset. Beyond data cleanliness, you also need to decide what is relevant to your analysis. In the Project Columns

step in Activity 1, did you notice that you did not use every available column in the CSV file? In order to increase

the predictive power of your model, you narrowed down the number of features. This is a key part of what is called

feature selection in machine learning. Additionally, through feature engineering, you can even create new data that

may help enhance your model.

Read more about feature selection and engineering in the Microsoft Azure documentation:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-feature-selection-and-engineering/

WANT TO LEARN MORE?

Click on the output for the SMOTE module and select Save as Dataset. Enter a name and click OK. Click on the

DATASETS icon to the left in the Azure ML Studio menu, and your dataset should appear. If you create a different

experiment, can you determine how to read from this saved dataset instead of the CSV file from Activity 1?

ADDITIONAL CHALLENGE

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-feature-selection-and-engineering/

13

This activity introduces the process to split data into separate train and test datasets, select a

model, and train that model using the train dataset. It also covers scoring the model using the

test dataset and finally looks at different ways to evaluate model performance. A classification

algorithm called Support Vector Machines (SVM) is used for this activity. The following steps do

not require knowledge of the algorithm, but for more technical detail, see http://bit.ly/1m8U7jo.

1. In the selection panel, search for split, drag the Split Data module into the experiment,

and drag the output from SMOTE into the input circle for Split Data.

2. Select the Split Data module, and in the Properties panel on the right, change the value

for Fraction of rows in the first output dataset from 0.5 to 0.7. This assigns 70% of the

data to your train dataset.

Activity 2: Train and Score a Model Using Support Vector Machines (SVM)

http://bit.ly/1m8U7jo

14

3. In the selection panel, search for support. A few

results will appear. Find Two-Class Support

Vector Machine under Classification. Drag the

module into the experiment, but do not attempt

to connect the Split Data module with the new

SVM module. Leave all of the default Properties

for the SVM module.

4. In the selection panel, search for sweep. Drag the

Sweep Parameters module into the experiment,

but do not attempt to connect anything to the

module yet.

Classification algorithms group

new observations based on features in

your training dataset. They are used with

discrete data.

Parameter sweeping uses

different variations of parameters and

selects the optimal combination for

training your model

(http://bit.ly/1HRVWer)

http://bit.ly/1HRVWer
http://bit.ly/1HRVWer

15

5. Connect the untrained model output from Two-Class Support Vector Machine to the

leftmost input of Sweep Parameters. Note as you drag the arrow how the appropriate

input is highlighted in green while the other two are red. Only the appropriate

connection is allowed.

6. Drag the leftmost output from the Split Data module to the second input of Sweep

Parameters.

7. In the Properties panel for Sweep Parameters to the right, change the value of

Maximum number of runs on random sweep from 5 to 20. Change the Metric for

measuring performance for classification from Accuracy to AUC (AUC stands for “area

under curve”, which will be explained in more depth later when the model is evaluated).

Finally, click Launch column selector and select the Churn column, then click OK.

16

8. Select Run in the bottom bar to run the experiment. It will take a minute for the

experiment to run. After it finishes, you should see a green check mark in all of the

modules.

17

9. Click on the Sweep Parameters module. Hover over the 1 output and note how it is

labeled Sweep results. Now, hover over the 2 output and note how it is labeled Trained

best model.

10. Click on the 1 (Sweep results) output and select Visualize. Note how the columns do

not reflect the original features from the dataset. There are nine columns associated with

the sweep action and twenty rows that correspond to the Maximum number of runs on

random sweep property. Click the X in the corner when done to return to the experiment.

Once the model has been

trained, the next step is to score it. For

classification, scoring provides a

prediction and the probability of it

occurring. (http://bit.ly/1lpX2Ed)

http://bit.ly/1lpX2Ed
http://bit.ly/1lpX2Ed

18

11. In the selection panel, search for score. Find the Score Model module under Machine

Learning—Score and drag it into the experiment.

12. Connect the second output from Sweep Parameters (trained best model) to the first

input of Score Model.

19

13. Connect the second output from Split Data to the second input of Score Model.

14. Select Run in the bottom bar to run the

experiment. It will take a minute for the

experiment to run. After it finishes, you should see

a green check mark in all of the modules.

15. Click on the output circle of Score Model and select Visualize. Scroll to the right and

note the addition of two new columns labeled Scored Labels and Scored Probabilities.

The SVM model predicts the probability that a gamer is going to churn based on the

selected features, and anything with a Scored Probability greater than 0.5 will have a

Scored Label of 1. Any Scored Probability less than 0.5 will be predicted not to churn and

have a Scored Label of 0. This trained model can be used later in time with new data to

help predict whether gamers in the new dataset may churn as well. If so, incentives can

be provided in-game in real-time to try to keep such gamers from leaving. When done,

click X in the corner to close the Visualize window.

Note how Azure ML uses the

split dataset. The first output is used to

train the model, and the second is used

to score it with the test dataset.

20

16. In the selection panel, search for evaluate. Find the Evaluate Model module under

Machine Learning—Evaluate and drag it into the experiment. Connect the output of the

Score Model module to the new Evaluate Model.

17. Select Run in the bottom bar to run the experiment. It will take a minute for the

experiment to run. After it finishes, you should see a green check mark in all of the

modules.

21

18. Click the output under Evaluate Model and select

Visualize to see the evaluation results. The default

chart is ROC, but you can select either

Precision/Recall or Lift as well. Scrolling down, you

see statistics related to how well the model should

perform at different thresholds. Drag the threshold

slider to see how the accuracy would be affected

at different levels.

Evaluating the model provides

details about its accuracy. Azure ML

uses different methods to determine

accuracy such as ROC, recall, and lift.

For a more detailed look at how to

interpret these charts, see the Azure

documentation (http://bit.ly/1SL05By)

A True Positive in this case is a predicted churn when the gamer is likely to churn in reality. A False

Positive is a predicted churn when the gamer is not likely to churn. Looking at the ROC curve, a larger area under

the curve (AUC) reflects higher accuracy. The Precision/Recall and Lift charts are two alternative methods to

measure accuracy. For a deeper understanding of ROC and how to interpret the ROC chart, see

http://bit.ly/1NJzvEp.

http://bit.ly/1SL05By
http://bit.ly/1SL05By
http://bit.ly/1NJzvEp
http://bit.ly/1NJzvEp

22

19. Click X in the corner of the evaluation window to close, then click Save in the bottom bar

to save your experiment.

23

Support Vector Machines (SVM) is only one algorithm among many available in Azure ML Studio. Depending on the

goal of your analysis, the data available, and other factors, you may need either supervised or unsupervised learning.

What is the difference between the two? At a high level, supervised learning involves labeled data and looks for

patterns in what is known. Unsupervised learning helps provide structure to unlabeled data.

SVM is used for classification—a supervised learning problem.

Read more about the different types of algorithms and how to choose between them:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/

WANT TO LEARN MORE?

Return to your experiment and click on the Two-Class Support Vector Machine module. In the Properties

window, change the number of iterations from 1 to 3. Run the experiment again (it may take longer this time), then

click the output under Evaluate Model and select Visualize. Do the ROC and Lift graphs differ from what you saw

with one iteration? Has the accuracy changed?

ADDITIONAL CHALLENGE

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/

24

This activity resembles the prior one, but an alternative classification algorithm called Boosted

Decision Trees is employed instead of SVM. Azure ML allows multiple machine learning

algorithms to be trained and scored in the same experiment. A decision tree models how

various combinations of features may contribute to a result. Boosted decision trees use multiple

individual decision trees to arrive at a better prediction. For more technical detail, see

http://bit.ly/1ID0rd5.

1. In the selection panel, search for decision. A few results will appear, and find Two-Class

Boosted Decision Tree under Classification. Drag the module into the experiment, but

do not attempt to connect the Split Data module with the new Boosted Decision Tree

module. Leave all of the default Properties for the Boosted Decision Tree module.

Activity 3: Train and Score a Model Using Boosted Decision Trees

http://bit.ly/1ID0rd5

25

2. In the selection panel, search for train model. Drag the Train Model module into the

experiment.

3. Connect the untrained model output from Two-Class Boosted Decision Tree to the

leftmost input of Train Model. Note as you drag the arrow how the appropriate input is

highlighted in green while the other input is red. Only the appropriate connection is

allowed.

4. Drag the leftmost output from the Split Data module to the second input of Train

Model.

26

5. Select the Train Model module, and in the Properties panel to the right, select Launch

column selector. Select the Churn column and click OK when done.

6. Select Run in the bottom bar to run the experiment. After it finishes, you should see a

green check mark in all of the modules.

7. Select the Train Model module, click on the output circle, and select Visualize. Note

that there are one hundred decision trees that correspond with the defaults for the

Boosted Decision Trees module. The algorithm is labeled “boosted” since it considers the

results from one hundred trees instead of only using one decision tree. You can explore

each of the trees visually. In addition, you can see the weight given to different features

within each tree by clicking on each of the leaves labeled 0. Click X in the corner when

done.

27

8. In the selection panel, search for score. Find the Score Model module under Machine

Learning—Score and drag it into the experiment. This creates a second module labeled

Score Model in the experiment, but it is on a separate path from the one used for the

SVM in the earlier activity.

9. Connect the output from Train Model to the first input of Score Model in the Boosted

Decision Tree path.

28

10. Connect the second output from Split Data to the second input of Score Model in the

Boosted Decision Tree path.

11. The two paths from the separate SVM and Boosted Decision Tree algorithms will now

converge at the Evaluate Model module. Connect the output of the Score Model in the

Boosted Decision Tree path to the Evaluate Model module.

29

12. Select Run in the bottom bar to run the experiment. After it finishes, you should see a

green check mark in all of the modules.

13. Click the output under Evaluate Model and select Visualize to see the evaluation

results. Since there are two inputs, you can see both results together. The SVM model

should appear as the Scored dataset, and the new Boosted Decision Tree model should

appear as the Scored dataset to compare. In the screenshot below, the ROC curve for

boosted decision trees shows that it performed much better than the SVM model in this

case. The area under the curve (AUC) is closer to 1.0 than the corresponding SVM curve.

14. Click X in the corner of the evaluation window to close, then click Save in the bottom bar

to save your experiment.

30

One of the primary goals of churn analysis is reducing the misclassification rate, or the number of false positives. In

Activity 3, you saw how changing the classification algorithm resulted in a better prediction in this case. Why not

always use Boosted Decision Trees instead of Support Vector Machines? A given model may be better in certain

circumstances, but you learned in the Want to Learn More? section in Activity 2 how to choose between models to

support different scenarios. In Azure ML, you can add many models to the experiment and pick the most

appropriate one for your data. In addition, as you become more involved in machine learning, your algorithm

parameter choices also play a large role. In this experiment, SVM performed more poorly when the number of

iterations was set to one, while the number of decision trees was set to one hundred!

Read more about how to optimize parameters in Azure ML:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-parameters-optimize/

WANT TO LEARN MORE?

1. Try to raise the accuracy of both SVM and Boosted Decision Trees by altering parameters. Keep in mind that

there can be a large tradeoff between performance (time and compute resources) versus accuracy. Especially

when trying to predict churn in near-real time, lower accuracy may be acceptable if it means the difference

between milliseconds and minutes.

2. Select a third classification algorithm using the Cheat Sheet (link below). Add it to your experiment, then train,

score, and evaluate it. How does it compare to the accuracy of SVM and Boosted Decision Trees with the Super

Family training data?

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/

ADDITIONAL CHALLENGE

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-parameters-optimize/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/

31

In prior activities, you prepared a sample churn experiment that trained, scored, and evaluated

Support Vector Machine and Boosted Decision Tree models. It is beneficial to see machine

learning in action in the Azure ML Studio, but how can an app such as your future Super Family

game take advantage of the churn model? In order to provide access to your model’s

capabilities, Azure ML allows you to create a web service that outside applications invoke.

1. Open your Super Family Churn experiment in Azure ML Studio.

2. Click on the Train Model module in the Boosted Decision Tree path.

3. In the bottom bar, hover over Set Up Web Service, then select Predictive Web Service.

a. NOTE: If you do not have the option to setup a web service, you may need to

Run your experiment again.

b. NOTE: If you see a small window appear that prompts you to select a train model,

click Finish, verify that you have selected the Train Model module associated

with Boosted Decision Trees as directed in step 2, then repeat this step.

4. A progress bar should appear at the bottom, and the predictive experiment should be

available after a few seconds.

Activity 4: Publish Your Churn Experiment as a Web Service

32

5. Note how two tabs now appear at the top: one for the original Training experiment, and

one that contains a modified Predictive experiment. At the top of the predictive

experiment, you should see a new Web service input module. At the bottom, you

should see a Web service output.

6. The default Web service input incorporates all features and is linked to the Metadata

Editor module, but you are only concerned with the subset of features from the Project

Columns module. Click on the arrow output from the Web service input module and hit

the Delete key. Drag an arrow from the output of Web service input to the second

input of the Score Model module. This will allow your web app to bypass the earlier data

processing steps.

7. In the bottom bar, select the option to Run the predictive experiment.

33

8. After the experiment runs, select the option to Deploy Web Service in the bottom bar.

9. Once deployed, a new window appears that displays an API Key as well as Default

Endpoint for using the predictive web service. Copy and retain the API Key since this

will later be used in Activity 5 to provide authentication to the service.

10. Click the REQUEST/RESPONSE link under Default Endpoint, and a new tab labeled

Request Response API Documentation will open. Copy and retain the Request URI, but

omit the &details=true portion. This address is what your Super Family web app in

Activity 5 will use to make requests.

11. Optionally, test the service by clicking on the Test

button next to Request/Response. A new window

appears, and you can enter sample data that

imitates what your actual data may contain.

The Request/Response and

Batch Execution formats are two ways to

operationalize your Azure ML

experiment. While not covered here,

Batch Execution allows you to create

jobs that handle multiple predictions.

34

A web service is the key way that your Super Family app will interact with your experiment. Operationalizing your

experiment by exposing it as a service takes your predictive capability and extends it to the outside world.

Read more about web services in Azure ML:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-

web-service/

WANT TO LEARN MORE?

The Super Family ASP.NET web app is only one way to interact with your web service. You can also use the service

with any application that makes HTTP requests—such as Microsoft Excel. If you looked carefully at the Default

Endpoint section on the web service Dashboard, there was a link to Download Excel Workbook next to the Test

button referenced in Step 9. Try downloading the workbook to see how you can test the web service in Excel. If you

create sample data in Excel, can you score that data by making a request to your web service?

ADDITIONAL CHALLENGE

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-web-service/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-web-service/

35

In this activity, you will utilize the predictive web service that you published in the Azure ML

Studio in the Super Family ASP.NET web app. While it is only a very basic game, it illustrates how

to request a churn score from your service as well as how to use that response to potentially

intervene and change the resulting app behavior. In the

latter portion of this activity, you can review at a high

level how this code works.

1. Verify that you have Visual Studio 2015 and the

Azure SDK version 2.8.1 (or greater) installed.

You can download Visual Studio Community for

free at https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

You can install the Azure SDK using the Microsoft Web Platform Installer.

2. In a browser, navigate to the following link to download a zip file that contains the Super

Family web app solution. You will modify this version prior to publishing to a website.

https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChu

rnDemo.zip (alternatively http://bit.ly/1I3LIrG)

3. After the SuperFamilyChurnDemo.zip download completes, extract the files by right-

clicking on the zip file and selecting Extract All. Extract to an appropriate location.

4. In the extracted folder, open the SuperFamilyChurnDemo solution in Visual Studio by

double-clicking it. Alternatively, open Visual Studio, select Open Project, and browse for

the solution file.

Activity 5: Create Your Super Family Game

Screenshots in both Activity 5

and Activity 6 reference the user

experience in Visual Studio Community

and Azure SDK 2.8.1.

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChurnDemo.zip
https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChurnDemo.zip
http://bit.ly/1I3LIrG

36

5. The Solution Explorer pane displays files related to the ASP.NET web app.

6. In the Solution Explorer, scroll to find the Web.config file, then double-click to open the

file. This file contains custom settings for the web application. The last section of the file

is appSettings, which has two key/value pairs for MLExperimentKey and MLUri.

7. Replace the value for MLExperimentKey using the API Key obtained from the Azure ML

web service in Activity 4. The value should maintain the quotation marks.

37

8. Replace the value for MLUri using the Request Uri obtained from the Azure ML web

service in Activity 4. Verify that &details=true has been omitted from the end of the URI

since including it may cause issues later during the build process. The value should

maintain the quotation marks.

9. Click the Save icon or use Ctrl+S to save the Web.config file after making the changes.

10. Find the Hero.cs file in Solution Explorer and double-click to open it. Do not make any

changes to this file.

The Hero class contains code that creates random data for churn prediction. These

random values for Age, NegativeTweetLast30Days, etc. correspond with the feature

selection from Azure Machine Learning. In a real game, all of this data would be based

on actual players, but for your demo Super Family game, this simulated data will be sent

to the Azure ML web service to predict churn.

11. Find the Default.aspx file in Solution Explorer, right-click and select View Code (do not

double-click to open the file since that will open the markup and not the code view). Do

not make any changes to this file.

38

12. Find the InvokeRequestResponseService method in the code. Note the variables mlUri

and apiKey that reference the MLUri and MLExperimentKey that you changed earlier in

the appSettings section of the Web.config file.

This portion of code prepares the

input for the Azure ML web

service request using the

simulated Hero values:

This portion of code specifies the address of your Azure ML web service using your Uri

(request/response endpoint) and authenticates using your Key:

This portion of code makes the request:

It is not necessary to replace the URI or Key in

Default.aspx.cs since it already utilizes the values in

Web.config. If you run into errors surrounding Web.config

during the Build or Publish process, first verify that you

have removed “&details=true” from the URI so that it ends

with “version=2.0”. If you still encounter issues, hardcoding

the values in Default.aspx.cs may be another workaround.

39

Once your app receives a response from the web service, this portion of code interprets

the response. If the response indicates the probability of churn above the stated

threshold, the churn variable is assigned the value of “1” (true).

In the CreateHero method found elsewhere in the Default.aspx.cs file, this churn value

influences game behavior and reflects intervention to try to prevent a player from

churning. If the churn prediction is “1” (true), the game displays a new helmet and a

congratulatory message to the player. If the churn prediction is false, the game displays a

message that the monster is too powerful and that the player has lost.

40

In the Super Family web application, the game code was provided for you. You replaced some default values with

your own and reviewed the portion of the code that consumed the Azure ML web service in the

InvokeRequestResponseService method. If you want to learn more about the Request-Response Service and get a

deeper understanding of what happens when the service is invoked, more information is available in the Azure

documentation.

Read more about consuming web services:

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-consume-web-services/

WANT TO LEARN MORE?

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-consume-web-services/

41

After changing the web application code to reference your own Azure Machine Learning web

service, you are ready to publish your Super Family game to Azure App Service. This activity

covers the steps required to move your app from the Visual Studio environment to Azure so that

you can play the game online as your own Azure Web App.

1. In a browser, navigate to https://portal.azure.com/#create/Microsoft.WebSite

(alternatively, go to https://portal.azure.com, select App Services and then click Add.

2. Enter a name for your new web app in App Service Name. This name will be included in

a URL and must be unique. Verify that a Subscription, Resource Group, and Location are

selected, then click Create. You should see a notification stating that Azure is “Deploying

Web App”.

Activity 6: Publish and Play your Super Family Game

It is possible to create a new

web app directly in Visual Studio. If you

are using a new Azure subscription and

do not have an existing resource group

setup, however, it may cause Visual

Studio to hang. To account for this

behavior, these steps use the Azure

Portal to create the new web app.

https://portal.azure.com/#create/Microsoft.WebSite
https://portal.azure.com/

42

3. Once the web app has been deployed, return to Visual Studio and open the

SuperFamilyChurnDemo project from Activity 5 if needed.

4. Right-click on the SuperFamilyChurnDemo project in the Solution Explorer, then select

Publish.

5. On the Profile screen, select Microsoft Azure App Service.

6. If you have never signed into Visual Studio with your Microsoft account, you will see an

option to Add an account in the top right corner. If you need to add your account, click

the button to login.

Otherwise, you should see your account listed with your Azure subscription.

7. Expand the Default resource group, and you should see the name of the web app that

you created in the Azure Portal. NOTE: If you had created your web app under an

alternative group name in the Azure Portal, you should expand that group instead.

43

8. Select the web app under the Default resource group and click OK.

9. On the Connection screen, you will see your web app Server, Site name, and Destination

URL. Take note of the Destination URL since that will be used to access your website

later. Click Publish to publish your web app to Azure.

44

10. Once the web app has been published, the Super Family game should open in your

default web browser. If you do not see it after Visual Studio publishes the app, try to

navigate manually to the Destination URL from the prior step.

11. In order to play your game, enter a Hero’s Name and click Start Game.

45

12. Choose your character from the list of four options by clicking on their photo.

13. At this stage, your web app invokes the Azure ML web service to obtain a churn

prediction. If churn is not predicted, you should see a message stating that the monster

is too powerful and that you lost. If churn is predicted, you will see a new helmet that

helps you win the fight. Note how these results correspond to the behavior that you saw

in the code from Activity 4. Remember that the training dataset provided had churn

events for about one out of every eight gamers. You may need to play a few rounds

before you see a helmet appear.

46

Helmet provided for Churn intervention, and player wins:

Helmet not provided, and player loses:

Congratulations! You have completed all of the activities.

47

This glossary contains terms relevant to your experiment in Azure ML.

 Accuracy: measures how good a classification model performs as the proportion of true results to

total cases

 AUC: area under the curve plotted with true positives on the y axis and false positives on the x axis.

This metric is useful because it provides a single number that lets you compare models of different

types.

 Decision Tree / Boosted Decision Trees: a type of classification algorithm

 Experiment: the core working environment in Azure Machine Learning

 False Positive: a test result that detects a condition when that condition is not present

 ML: machine learning

 Precision: the proportion of true results over all positive results

 Recall: the fraction of all correct results returned by the model

 ROC: Receiver Operator Characteristic

 SMOTE: Synthetic Minority Oversampling Technique used to enhance small sample sizes

 Support Vector Machine (SVM): a type of classification algorithm

 True Positive: a test result that detects a condition when that condition is present

 Web Service: a standardized way of integrating web applications over the internet

AZURE MACHINE LEARNING GLOSSARY

48

Terms of Use
© 2015 Microsoft Corporation.

All rights reserved.

By using this material, you agree to the following terms: The technology/functionality described in this lab is provided

by Microsoft Corporation in a “sandbox” testing environment in order to provide you with a learning experience. You

may only use the lab to evaluate such technology features and functionality and provide feedback to Microsoft. You

may not use it for any other purpose. You may not modify copy, distribute, transmit, display, perform, reproduce,

publish, license, create derivative works from, transfer, or sell this lab or any portion thereof.

COPYING OR REPRODUCTION OF THE LAB (OR ANY PORTION OF IT) TO ANY OTHER SERVER OR LOCATION FOR

FURTHER REPRODUCTION OR REDISTRIBUTION IS EXPRESSLY PROHIBITED. THIS LAB PROVIDES CERTAIN SOFTWARE

TECHNOLOGY/PRODUCT FEATURES AND FUNCTIONALITY, INCLUDING POTENTIAL NEW FEATURES AND CONCEPTS.

THE TECHNOLOGY/CONCEPTS REPRESENTED IN THIS LAB MAY NOT REPRESENT FULL FEATURE FUNCTIONALITY

AND MAY NOT WORK THE WAY A FINAL VERSION MAY WORK. WE ALSO MAY NOT RELEASE A FINAL VERSION OF

SUCH FEATURES OR CONCEPTS. YOUR EXPERIENCE WITH USING SUCH FEATURES AND FUNCITONALITY IN A

PHYSICAL ENVIRONMENT MAY ALSO BE DIFFERENT.

FEEDBACK If you give feedback about the technology features, functionality and/or concepts described in this lab to

Microsoft, you give to Microsoft, without charge, the right to use, share and commercialize your feedback in any way

and for any purpose. You also give to third parties, without charge, any patent rights needed for their products,

technologies and services to use or interface with any specific parts of a Microsoft software or service Terms of Use

that includes the feedback. You will not give feedback that is subject to a license that requires Microsoft to license its

software or documentation to third parties because we include your feedback in them. These rights survive this

agreement.

MICROSOFT CORPORATION HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE LAB,

INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR

STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. MICROSOFT DOES NOT MAKE

ANY ASSURANCES OR REPRESENTATIONS WITH REGARD TO THE ACCURACY OF THE RESULTS, OUTPUT THAT

DERIVES FROM USE OF THE VIRTUAL LAB, OR SUITABILITY OF THE INFORMATION CONTAINED IN THE VIRTUAL LAB

FOR ANY PURPOSE.

DISCLAIMER This lab contains only a portion of the features and enhancements in Microsoft Azure Machine

Learning, Visual Studio, and Azure App Service. Some of the features might change in future releases of the product.

