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Churn is a term employed when consumers stop using a good or service. It is seen across a 

number of industries, and in many cases, companies devote additional resources to stop a 

customer from leaving. With online computer games, for example, substantial data is available 

to analyze individual and collective player behavior to help predict when a particular gamer may 

leave. Game creators may even take their capabilities a step further and intervene in-game to 

incentivize players to continue gaming. Additional bonuses, power-ups, and numerous other 

tactics are common methods employed to keep such players involved. 

The Super Family game is a basic web app about a family of super 

heroes. Heroes battle villains, but there is a twist—the game uses the 

results of a predictive model to account for potential churn, and it 

provides a new helmet to a player if a churn event is imminent. If 

churn is not likely, the game does not provide the bonus.  

You will have the opportunity to alter your machine learning 

experiment to try to make your churn prediction as accurate as 

possible. In the real world, misclassification can be costly. Imagine if a company provided a free 

month of service or a hotel provided a free stay, when the customer was not actually 

considering alternative services. Money or other resources would have been employed for no 

reason. The goal in this case is to reduce such false positives—when a churn event is predicted, 

but in reality, the consumer is not likely to churn. 

 

Objectives 

 

This exercise is split into six activities that will help you gain an understanding of churn analysis 

and how to intervene to try to prevent churn. You will learn the basic process used to train, score 

and evaluate a predictive churn model. The first four activities utilize Azure Machine Learning 

1 – Prepare data for a churn experiment        page 3 

2 – Train and score a model using Support Vector Machines     page 13 

3 – Train and score a model using Boosted Decision Trees    page 24 

4 – Publish your churn experiment as a web service     page 31 

5 – Create your Super Family game         page 35 

6 – Publish and play the Super Family game        page 41 

 

Overview 
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(Azure ML) to prepare a model to determine whether or not a player may churn. The final two 

activities use Azure App Service and involve deploying a simple ASP.NET Super Family game 

that invokes your Azure ML model. Based on the prediction returned by Azure ML, in-game 

behavior changes to incentivize a player to continue playing. Using different selection of 

features and changes to model parameters, how accurate can you become at predicting churn? 

 

Requirements/Prerequisites 

1. A Microsoft account is required to access an Azure Machine Learning workspace. If you 

do not already have a Microsoft account, you can obtain one for free by following the 

link below: 

https://www.microsoft.com/en-us/account/default.aspx 

2. An Azure subscription is required to use Azure App Service and the associated 

publishing features of Visual Studio. You will be provided an Azure Pass and activation 

instructions via e-mail after signing up for the challenge. 

https://azure.microsoft.com/ 

3. Visual Studio 2015 is required for the Super Family ASP.NET web app project. The free 

Visual Studio Community version is available using the link below: 

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx 

4. The Azure SDK version 2.8.1 is required to publish your Super Family app to Azure App 

Service using Visual Studio. The Azure SDK can be installed using the Web Platform 

Installer. 

https://www.microsoft.com/web/downloads/platform.aspx 
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In order to predict when a gamer may churn and provide incentive for them to stay, you will 

start by creating an experiment in Azure Machine Learning. This activity covers how to setup an 

experiment in Azure ML Studio, read a dataset, and perform basic data preparation before it 

can be used by a machine learning algorithm. 

 

1. Go to https://studio.azureml.net and Sign In using the Microsoft Account you used to 

activate your Microsoft Azure Pass.  

 

 

2. After signing in, if this is your first time accessing Azure ML, you may see an option to 

Take a Tour. Select Not Now if applicable.  

 

Activity 1: Prepare Data for a Churn Experiment 

https://studio.azureml.net/
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3. Select the option for Blank Experiment. NOTE: You may need to click New first. 

 

4. Click on the experiment title at the top and rename it from “Experiment created on 

[current date]” to Super Family Churn. The game scenario that you will create in a later 

activity will be Super Family. 
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5. In the selection panel on the left, you will see a number of menu options relating to 

functionality in Azure ML. Many of the options will not be relevant for this experiment, so 

you will rely on the search functionality rather than browsing. In the search box, type 

reader, and you should see the Reader option appear under Data Input and Output.  

 

6. Click on the Reader option under Data Input and Output, then drag it into your 

experiment where it says Drag Items Here. 

 

7. At this point, click the Save icon on the bottom bar, then select the Save option. After a 

few seconds, you should see a timestamp noting that the experiment has been saved. 

 

 

8. In the Properties panel for the Reader, you will add your data input. The input is available 

online in CSV (comma-separated) format. It contains historical attributes that can be 

used to train your machine learning models as well as a Churn column noting whether or 

not a gamer churned in reality. 

a. For Data source, select Web URL via HTTP.  
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b. For URL, copy the following link and paste it into the URL field: 

https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/Su

perFamilyTraining.csv 

c. For Data format, select CSV. 

d. Check the box for CSV or TSV has headers (NOTE: this selection is not optional 

and having it checked is important for future steps). 

 

9. Select Run in the bottom bar to run the experiment. Running it now will allow you to 

visualize the new CSV dataset in Azure ML. 

 

10. After the experiment runs, you should see a green checkmark next to your Reader 

module. Click on the small circle at the bottom of the Reader module and select the 

option to Visualize. 

 

https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/SuperFamilyTraining.csv
https://cdn.rawgit.com/ImagineCupGame/SuperFamilyAzureML/master/SuperFamilyTraining.csv
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11. The window that opens shows a preview of all of the data that is available to use for 

predicting whether a gamer will churn. Note that the training dataset contains 408 rows 

and 19 columns. In each column, a small histogram appears showing how the data is 

distributed. Scroll to the right until you see the Churn column, and then select it. Note 

how more detailed Statistics are available. Because gamers will either churn or not churn, 

this data is represented as either a zero (false) or one (true). A “1” represents a churn 

event, and looking at the Mean of 0.1275, it appears that one in eight gamers churned in 

our training dataset. Browse the data as desired, and then click the X in the top right 

corner to return to the experiment when ready. 

 

 

12. In the selection panel, search for metadata, then drag the Metadata Editor into the 

experiment. This module will allow you to manage how the training data is described. 
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13. When you click off of the new Metadata Editor module, notice that it has a red 

exclamation point. Hovering over the warning allows you to see that a value is required. 

This warning appears because the Metadata Editor does not have any data input from 

the Reader!  

 

 

14. Hover over the circle atop the Metadata Editor and note that it is requesting a Dataset 

input. 

 

 

15. Now, click on the circle under Reader, and drag the arrow to the circle above Metadata 

Editor. This takes the dataset as output from your Reader and makes it available to the 

Metadata Editor as input. 
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16. Select Metadata Editor, and in the Properties panel on the right, click Launch column 

selector. In the new window, select the Churn column from the list, then click the OK 

button. 

 

17. Back in Properties, change the option for Fields to Label. 

 

18. In the selection panel, search for project, drag the Project Columns module into the 

experiment, and drag the output from Metadata Editor into the input circle for Project 

Columns. This new module allows you to filter the dataset and select which of the 

attributes in the training dataset will be used (out of the 19 feature columns). 
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19. Select Project Columns, and in the Properties panel on the right, click Launch column 

selector. In the new window, select the Age, NegativeTweetLast30Days, 

PositiveTweetLast30Days, IsMarried, DurationMinutes, TotalVirtualCurrency, State, 

and Churn columns from the list. Click the OK button when done. 

 

20. In the selection panel, search for smote, drag the SMOTE module into the experiment, 

and drag the output from Project Columns into the input circle for SMOTE.  
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21. Select the SMOTE module, and in the Properties 

panel on the right, select Launch column 

selector. Change the included columns option 

from all labels to column names, select the Churn 

column, and click OK. 

 

 

22. Back in the Properties panel, change the SMOTE percentage to 200 and Number of 

nearest neighbors to 2. Leave Random seed as 0. 

 

23. At this stage, you took an initial dataset containing past player behavior and selected a 

subset of features that will be used later for prediction. You have prepared your data and 

are ready to work with machine learning models.  Save the experiment. 

“SMOTE” stands for Synthetic 

Minority Oversampling Technique and is 

a way to strategically increase your 

sample size (http://bit.ly/1PT2Vqt) 

http://bit.ly/1PT2Vqt
http://bit.ly/1PT2Vqt
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Before using machine learning algorithms in Azure ML, you need to make good initial decisions about your data. 

The sample game data is fairly straightforward, but in reality, it may take a lot of work to obtain and clean your 

dataset. Beyond data cleanliness, you also need to decide what is relevant to your analysis. In the Project Columns 

step in Activity 1, did you notice that you did not use every available column in the CSV file? In order to increase 

the predictive power of your model, you narrowed down the number of features. This is a key part of what is called 

feature selection in machine learning. Additionally, through feature engineering, you can even create new data that 

may help enhance your model. 

Read more about feature selection and engineering in the Microsoft Azure documentation: 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-feature-selection-and-engineering/ 

 

WANT TO LEARN MORE? 

Click on the output for the SMOTE module and select Save as Dataset. Enter a name and click OK. Click on the 

DATASETS icon to the left in the Azure ML Studio menu, and your dataset should appear. If you create a different 

experiment, can you determine how to read from this saved dataset instead of the CSV file from Activity 1? 

 

 

ADDITIONAL CHALLENGE 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-feature-selection-and-engineering/
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This activity introduces the process to split data into separate train and test datasets, select a 

model, and train that model using the train dataset. It also covers scoring the model using the 

test dataset and finally looks at different ways to evaluate model performance. A classification 

algorithm called Support Vector Machines (SVM) is used for this activity. The following steps do 

not require knowledge of the algorithm, but for more technical detail, see http://bit.ly/1m8U7jo. 

 

1. In the selection panel, search for split, drag the Split Data module into the experiment, 

and drag the output from SMOTE into the input circle for Split Data.  

 

2. Select the Split Data module, and in the Properties panel on the right, change the value 

for Fraction of rows in the first output dataset from 0.5 to 0.7. This assigns 70% of the 

data to your train dataset. 

 

Activity 2: Train and Score a Model Using Support Vector Machines (SVM) 

http://bit.ly/1m8U7jo
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3. In the selection panel, search for support. A few 

results will appear. Find Two-Class Support 

Vector Machine under Classification. Drag the 

module into the experiment, but do not attempt 

to connect the Split Data module with the new 

SVM module. Leave all of the default Properties 

for the SVM module. 

 

 

4. In the selection panel, search for sweep. Drag the 

Sweep Parameters module into the experiment, 

but do not attempt to connect anything to the 

module yet.  

 

 

 

Classification algorithms group 

new observations based on features in 

your training dataset. They are used with 

discrete data. 

Parameter sweeping uses 

different variations of parameters and 

selects the optimal combination for 

training your model 

(http://bit.ly/1HRVWer) 

http://bit.ly/1HRVWer
http://bit.ly/1HRVWer
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5. Connect the untrained model output from Two-Class Support Vector Machine to the 

leftmost input of Sweep Parameters. Note as you drag the arrow how the appropriate 

input is highlighted in green while the other two are red. Only the appropriate 

connection is allowed. 

 

6. Drag the leftmost output from the Split Data module to the second input of Sweep 

Parameters. 

 

7. In the Properties panel for Sweep Parameters to the right, change the value of 

Maximum number of runs on random sweep from 5 to 20. Change the Metric for 

measuring performance for classification from Accuracy to AUC (AUC stands for “area 

under curve”, which will be explained in more depth later when the model is evaluated). 

Finally, click Launch column selector and select the Churn column, then click OK. 
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8. Select Run in the bottom bar to run the experiment. It will take a minute for the 

experiment to run. After it finishes, you should see a green check mark in all of the 

modules. 
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9. Click on the Sweep Parameters module. Hover over the 1 output and note how it is 

labeled Sweep results. Now, hover over the 2 output and note how it is labeled Trained 

best model. 

 

 

10. Click on the 1 (Sweep results) output and select Visualize. Note how the columns do 

not reflect the original features from the dataset. There are nine columns associated with 

the sweep action and twenty rows that correspond to the Maximum number of runs on 

random sweep property. Click the X in the corner when done to return to the experiment. 

 

 

 

 

 

 

 

 

 

Once the model has been 

trained, the next step is to score it. For 

classification, scoring provides a 

prediction and the probability of it 

occurring. (http://bit.ly/1lpX2Ed) 

http://bit.ly/1lpX2Ed
http://bit.ly/1lpX2Ed
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11.  In the selection panel, search for score. Find the Score Model module under Machine 

Learning—Score and drag it into the experiment. 

 

12. Connect the second output from Sweep Parameters (trained best model) to the first 

input of Score Model.  
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13. Connect the second output from Split Data to the second input of Score Model. 

 

 

 

14. Select Run in the bottom bar to run the 

experiment. It will take a minute for the 

experiment to run. After it finishes, you should see 

a green check mark in all of the modules. 

 

 

15. Click on the output circle of Score Model and select Visualize. Scroll to the right and 

note the addition of two new columns labeled Scored Labels and Scored Probabilities. 

The SVM model predicts the probability that a gamer is going to churn based on the 

selected features, and anything with a Scored Probability greater than 0.5 will have a 

Scored Label of 1. Any Scored Probability less than 0.5 will be predicted not to churn and 

have a Scored Label of 0. This trained model can be used later in time with new data to 

help predict whether gamers in the new dataset may churn as well. If so, incentives can 

be provided in-game in real-time to try to keep such gamers from leaving. When done, 

click X in the corner to close the Visualize window. 

Note how Azure ML uses the 

split dataset. The first output is used to 

train the model, and the second is used 

to score it with the test dataset. 



 
 

20 

 

16. In the selection panel, search for evaluate. Find the Evaluate Model module under 

Machine Learning—Evaluate and drag it into the experiment. Connect the output of the 

Score Model module to the new Evaluate Model. 

 

17. Select Run in the bottom bar to run the experiment. It will take a minute for the 

experiment to run. After it finishes, you should see a green check mark in all of the 

modules. 
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18. Click the output under Evaluate Model and select 

Visualize to see the evaluation results. The default 

chart is ROC, but you can select either 

Precision/Recall or Lift as well. Scrolling down, you 

see statistics related to how well the model should 

perform at different thresholds. Drag the threshold 

slider to see how the accuracy would be affected 

at different levels. 

 

 

 

Evaluating the model provides 

details about its accuracy. Azure ML 

uses different methods to determine 

accuracy such as ROC, recall, and lift.  

For a more detailed look at how to 

interpret these charts, see the Azure 

documentation (http://bit.ly/1SL05By) 

A True Positive in this case is a predicted churn when the gamer is likely to churn in reality. A False 

Positive is a predicted churn when the gamer is not likely to churn. Looking at the ROC curve, a larger area under 

the curve (AUC) reflects higher accuracy. The Precision/Recall and Lift charts are two alternative methods to 

measure accuracy. For a deeper understanding of ROC and how to interpret the ROC chart, see 

http://bit.ly/1NJzvEp. 

 

http://bit.ly/1SL05By
http://bit.ly/1SL05By
http://bit.ly/1NJzvEp
http://bit.ly/1NJzvEp
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19. Click X in the corner of the evaluation window to close, then click Save in the bottom bar 

to save your experiment. 
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Support Vector Machines (SVM) is only one algorithm among many available in Azure ML Studio. Depending on the 

goal of your analysis, the data available, and other factors, you may need either supervised or unsupervised learning. 

What is the difference between the two? At a high level, supervised learning involves labeled data and looks for 

patterns in what is known. Unsupervised learning helps provide structure to unlabeled data. 

SVM is used for classification—a supervised learning problem. 

Read more about the different types of algorithms and how to choose between them: 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/ 

 

WANT TO LEARN MORE? 

Return to your experiment and click on the Two-Class Support Vector Machine module. In the Properties 

window, change the number of iterations from 1 to 3. Run the experiment again (it may take longer this time), then 

click the output under Evaluate Model and select Visualize. Do the ROC and Lift graphs differ from what you saw 

with one iteration? Has the accuracy changed? 

 

ADDITIONAL CHALLENGE 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/
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This activity resembles the prior one, but an alternative classification algorithm called Boosted 

Decision Trees is employed instead of SVM. Azure ML allows multiple machine learning 

algorithms to be trained and scored in the same experiment. A decision tree models how 

various combinations of features may contribute to a result. Boosted decision trees use multiple 

individual decision trees to arrive at a better prediction. For more technical detail, see 

http://bit.ly/1ID0rd5. 

 

 

1. In the selection panel, search for decision. A few results will appear, and find Two-Class 

Boosted Decision Tree under Classification. Drag the module into the experiment, but 

do not attempt to connect the Split Data module with the new Boosted Decision Tree 

module. Leave all of the default Properties for the Boosted Decision Tree module. 

 

Activity 3: Train and Score a Model Using Boosted Decision Trees 

http://bit.ly/1ID0rd5
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2. In the selection panel, search for train model. Drag the Train Model module into the 

experiment. 

 

3. Connect the untrained model output from Two-Class Boosted Decision Tree to the 

leftmost input of Train Model. Note as you drag the arrow how the appropriate input is 

highlighted in green while the other input is red. Only the appropriate connection is 

allowed. 

 

4. Drag the leftmost output from the Split Data module to the second input of Train 

Model. 
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5. Select the Train Model module, and in the Properties panel to the right, select Launch 

column selector. Select the Churn column and click OK when done. 

 

6. Select Run in the bottom bar to run the experiment. After it finishes, you should see a 

green check mark in all of the modules.  

 

 

7. Select the Train Model module, click on the output circle, and select Visualize. Note 

that there are one hundred decision trees that correspond with the defaults for the 

Boosted Decision Trees module. The algorithm is labeled “boosted” since it considers the 

results from one hundred trees instead of only using one decision tree. You can explore 

each of the trees visually. In addition, you can see the weight given to different features 

within each tree by clicking on each of the leaves labeled 0. Click X in the corner when 

done. 
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8. In the selection panel, search for score. Find the Score Model module under Machine 

Learning—Score and drag it into the experiment. This creates a second module labeled 

Score Model in the experiment, but it is on a separate path from the one used for the 

SVM in the earlier activity. 

 

 

9. Connect the output from Train Model to the first input of Score Model in the Boosted 

Decision Tree path.  
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10. Connect the second output from Split Data to the second input of Score Model in the 

Boosted Decision Tree path. 

 

 

 

11. The two paths from the separate SVM and Boosted Decision Tree algorithms will now 

converge at the Evaluate Model module. Connect the output of the Score Model in the 

Boosted Decision Tree path to the Evaluate Model module.  
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12. Select Run in the bottom bar to run the experiment. After it finishes, you should see a 

green check mark in all of the modules. 

 

 

 

13. Click the output under Evaluate Model and select Visualize to see the evaluation 

results. Since there are two inputs, you can see both results together. The SVM model 

should appear as the Scored dataset, and the new Boosted Decision Tree model should 

appear as the Scored dataset to compare. In the screenshot below, the ROC curve for 

boosted decision trees shows that it performed much better than the SVM model in this 

case. The area under the curve (AUC) is closer to 1.0 than the corresponding SVM curve. 

 

 

 

14. Click X in the corner of the evaluation window to close, then click Save in the bottom bar 

to save your experiment. 
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One of the primary goals of churn analysis is reducing the misclassification rate, or the number of false positives. In 

Activity 3, you saw how changing the classification algorithm resulted in a better prediction in this case. Why not 

always use Boosted Decision Trees instead of Support Vector Machines? A given model may be better in certain 

circumstances, but you learned in the Want to Learn More? section in Activity 2 how to choose between models to 

support different scenarios. In Azure ML, you can add many models to the experiment and pick the most 

appropriate one for your data. In addition, as you become more involved in machine learning, your algorithm 

parameter choices also play a large role. In this experiment, SVM performed more poorly when the number of 

iterations was set to one, while the number of decision trees was set to one hundred! 

 

Read more about how to optimize parameters in Azure ML: 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-parameters-optimize/ 

 

WANT TO LEARN MORE? 

 

1. Try to raise the accuracy of both SVM and Boosted Decision Trees by altering parameters. Keep in mind that 

there can be a large tradeoff between performance (time and compute resources) versus accuracy. Especially 

when trying to predict churn in near-real time, lower accuracy may be acceptable if it means the difference 

between milliseconds and minutes. 

 

 

2. Select a third classification algorithm using the Cheat Sheet (link below). Add it to your experiment, then train, 

score, and evaluate it. How does it compare to the accuracy of SVM and Boosted Decision Trees with the Super 

Family training data? 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/ 

 

ADDITIONAL CHALLENGE 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-parameters-optimize/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/
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In prior activities, you prepared a sample churn experiment that trained, scored, and evaluated 

Support Vector Machine and Boosted Decision Tree models. It is beneficial to see machine 

learning in action in the Azure ML Studio, but how can an app such as your future Super Family 

game take advantage of the churn model? In order to provide access to your model’s 

capabilities, Azure ML allows you to create a web service that outside applications invoke.  

1. Open your Super Family Churn experiment in Azure ML Studio. 

 

2. Click on the Train Model module in the Boosted Decision Tree path. 

 

3. In the bottom bar, hover over Set Up Web Service, then select Predictive Web Service.  

a. NOTE: If you do not have the option to setup a web service, you may need to 

Run your experiment again. 

b. NOTE: If you see a small window appear that prompts you to select a train model, 

click Finish, verify that you have selected the Train Model module associated 

with Boosted Decision Trees as directed in step 2, then repeat this step. 

 

 

 

4. A progress bar should appear at the bottom, and the predictive experiment should be 

available after a few seconds. 

 

 

 

 

Activity 4: Publish Your Churn Experiment as a Web Service 
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5. Note how two tabs now appear at the top: one for the original Training experiment, and 

one that contains a modified Predictive experiment. At the top of the predictive 

experiment, you should see a new Web service input module. At the bottom, you 

should see a Web service output. 

 

     

 

6. The default Web service input incorporates all features and is linked to the Metadata 

Editor module, but you are only concerned with the subset of features from the Project 

Columns module. Click on the arrow output from the Web service input module and hit 

the Delete key. Drag an arrow from the output of Web service input to the second 

input of the Score Model module. This will allow your web app to bypass the earlier data 

processing steps. 

 

 

 

7. In the bottom bar, select the option to Run the predictive experiment.  
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8. After the experiment runs, select the option to Deploy Web Service in the bottom bar. 

 

 

9. Once deployed, a new window appears that displays an API Key as well as Default 

Endpoint for using the predictive web service. Copy and retain the API Key since this 

will later be used in Activity 5 to provide authentication to the service. 

 

 

10. Click the REQUEST/RESPONSE link under Default Endpoint, and a new tab labeled 

Request Response API Documentation will open. Copy and retain the Request URI, but 

omit the &details=true portion. This address is what your Super Family web app in 

Activity 5 will use to make requests. 

 

 

 

 

11. Optionally, test the service by clicking on the Test 

button next to Request/Response. A new window 

appears, and you can enter sample data that 

imitates what your actual data may contain. 

  

The Request/Response and 

Batch Execution formats are two ways to 

operationalize your Azure ML 

experiment. While not covered here, 

Batch Execution allows you to create 

jobs that handle multiple predictions. 
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A web service is the key way that your Super Family app will interact with your experiment. Operationalizing your 

experiment by exposing it as a service takes your predictive capability and extends it to the outside world.  

Read more about web services in Azure ML: 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-

web-service/ 

 

WANT TO LEARN MORE? 

 

The Super Family ASP.NET web app is only one way to interact with your web service. You can also use the service 

with any application that makes HTTP requests—such as Microsoft Excel. If you looked carefully at the Default 

Endpoint section on the web service Dashboard, there was a link to Download Excel Workbook next to the Test 

button referenced in Step 9. Try downloading the workbook to see how you can test the web service in Excel. If you 

create sample data in Excel, can you score that data by making a request to your web service? 

 

 

 

 

ADDITIONAL CHALLENGE 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-web-service/
https://azure.microsoft.com/en-us/documentation/articles/machine-learning-model-progression-experiment-to-web-service/
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In this activity, you will utilize the predictive web service that you published in the Azure ML 

Studio in the Super Family ASP.NET web app. While it is only a very basic game, it illustrates how 

to request a churn score from your service as well as how to use that response to potentially 

intervene and change the resulting app behavior. In the 

latter portion of this activity, you can review at a high 

level how this code works. 

1. Verify that you have Visual Studio 2015 and the 

Azure SDK version 2.8.1 (or greater) installed.  

 

You can download Visual Studio Community for 

free at https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx 

 

You can install the Azure SDK using the Microsoft Web Platform Installer. 

 

2. In a browser, navigate to the following link to download a zip file that contains the Super 

Family web app solution. You will modify this version prior to publishing to a website. 

https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChu

rnDemo.zip (alternatively http://bit.ly/1I3LIrG) 

 

3. After the SuperFamilyChurnDemo.zip download completes, extract the files by right-

clicking on the zip file and selecting Extract All. Extract to an appropriate location. 

 

4. In the extracted folder, open the SuperFamilyChurnDemo solution in Visual Studio by 

double-clicking it. Alternatively, open Visual Studio, select Open Project, and browse for 

the solution file. 

 

  

Activity 5: Create Your Super Family Game 

Screenshots in both Activity 5 

and Activity 6 reference the user 

experience in Visual Studio Community 

and Azure SDK 2.8.1. 

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChurnDemo.zip
https://github.com/ImagineCupGame/SuperFamilyAzureML/raw/master/SuperFamilyChurnDemo.zip
http://bit.ly/1I3LIrG
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5. The Solution Explorer pane displays files related to the ASP.NET web app.  

 

6. In the Solution Explorer, scroll to find the Web.config file, then double-click to open the 

file. This file contains custom settings for the web application. The last section of the file 

is appSettings, which has two key/value pairs for MLExperimentKey and MLUri. 

 

7. Replace the value for MLExperimentKey using the API Key obtained from the Azure ML 

web service in Activity 4. The value should maintain the quotation marks. 
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8. Replace the value for MLUri using the Request Uri obtained from the Azure ML web 

service in Activity 4. Verify that &details=true has been omitted from the end of the URI 

since including it may cause issues later during the build process. The value should 

maintain the quotation marks. 

 

9. Click the Save icon or use Ctrl+S to save the Web.config file after making the changes. 

 

10. Find the Hero.cs file in Solution Explorer and double-click to open it. Do not make any 

changes to this file.  

 

The Hero class contains code that creates random data for churn prediction. These 

random values for Age, NegativeTweetLast30Days, etc. correspond with the feature 

selection from Azure Machine Learning. In a real game, all of this data would be based 

on actual players, but for your demo Super Family game, this simulated data will be sent 

to the Azure ML web service to predict churn. 

 

11. Find the Default.aspx file in Solution Explorer, right-click and select View Code (do not 

double-click to open the file since that will open the markup and not the code view). Do 

not make any changes to this file.  
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12. Find the InvokeRequestResponseService method in the code. Note the variables mlUri 

and apiKey that reference the MLUri and MLExperimentKey that you changed earlier in 

the appSettings section of the Web.config file.  

 

 

 

 

This portion of code prepares the 

input for the Azure ML web 

service request using the 

simulated Hero values: 

 

 

 

This portion of code specifies the address of your Azure ML web service using your Uri 

(request/response endpoint) and authenticates using your Key: 

 

 

This portion of code makes the request: 

 

It is not necessary to replace the URI or Key in 

Default.aspx.cs since it already utilizes the values in 

Web.config. If you run into errors surrounding Web.config 

during the Build or Publish process, first verify that you 

have removed “&details=true” from the URI so that it ends 

with “version=2.0”. If you still encounter issues, hardcoding 

the values in Default.aspx.cs may be another workaround. 
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Once your app receives a response from the web service, this portion of code interprets 

the response. If the response indicates the probability of churn above the stated 

threshold, the churn variable is assigned the value of “1” (true).  

 

 

 

In the CreateHero method found elsewhere in the Default.aspx.cs file, this churn value 

influences game behavior and reflects intervention to try to prevent a player from 

churning. If the churn prediction is “1” (true), the game displays a new helmet and a 

congratulatory message to the player. If the churn prediction is false, the game displays a 

message that the monster is too powerful and that the player has lost. 
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In the Super Family web application, the game code was provided for you. You replaced some default values with 

your own and reviewed the portion of the code that consumed the Azure ML web service in the 

InvokeRequestResponseService method. If you want to learn more about the Request-Response Service and get a 

deeper understanding of what happens when the service is invoked, more information is available in the Azure 

documentation.  

Read more about consuming web services: 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-consume-web-services/ 

 

WANT TO LEARN MORE? 

 

 

 

https://azure.microsoft.com/en-us/documentation/articles/machine-learning-consume-web-services/
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After changing the web application code to reference your own Azure Machine Learning web 

service, you are ready to publish your Super Family game to Azure App Service. This activity 

covers the steps required to move your app from the Visual Studio environment to Azure so that 

you can play the game online as your own Azure Web App. 

1. In a browser, navigate to https://portal.azure.com/#create/Microsoft.WebSite 

(alternatively, go to https://portal.azure.com, select App Services and then click Add. 

 

 

2. Enter a name for your new web app in App Service Name. This name will be included in 

a URL and must be unique. Verify that a Subscription, Resource Group, and Location are 

selected, then click Create. You should see a notification stating that Azure is “Deploying 

Web App”. 

 

Activity 6: Publish and Play your Super Family Game 

It is possible to create a new 

web app directly in Visual Studio. If you 

are using a new Azure subscription and 

do not have an existing resource group 

setup, however, it may cause Visual 

Studio to hang. To account for this 

behavior, these steps use the Azure 

Portal to create the new web app. 

https://portal.azure.com/#create/Microsoft.WebSite
https://portal.azure.com/
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3. Once the web app has been deployed, return to Visual Studio and open the 

SuperFamilyChurnDemo project from Activity 5 if needed. 

 

4. Right-click on the SuperFamilyChurnDemo project in the Solution Explorer, then select 

Publish. 

 

5. On the Profile screen, select Microsoft Azure App Service. 

 

 

6. If you have never signed into Visual Studio with your Microsoft account, you will see an 

option to Add an account in the top right corner. If you need to add your account, click 

the button to login.  

 

Otherwise, you should see your account listed with your Azure subscription. 

 

 

7. Expand the Default resource group, and you should see the name of the web app that 

you created in the Azure Portal. NOTE: If you had created your web app under an 

alternative group name in the Azure Portal, you should expand that group instead. 
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8. Select the web app under the Default resource group and click OK. 

 

 

9. On the Connection screen, you will see your web app Server, Site name, and Destination 

URL. Take note of the Destination URL since that will be used to access your website 

later. Click Publish to publish your web app to Azure. 
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10. Once the web app has been published, the Super Family game should open in your 

default web browser. If you do not see it after Visual Studio publishes the app, try to 

navigate manually to the Destination URL from the prior step. 

 

 

11. In order to play your game, enter a Hero’s Name and click Start Game. 
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12. Choose your character from the list of four options by clicking on their photo. 

 

 

13. At this stage, your web app invokes the Azure ML web service to obtain a churn 

prediction. If churn is not predicted, you should see a message stating that the monster 

is too powerful and that you lost. If churn is predicted, you will see a new helmet that 

helps you win the fight. Note how these results correspond to the behavior that you saw 

in the code from Activity 4. Remember that the training dataset provided had churn 

events for about one out of every eight gamers. You may need to play a few rounds 

before you see a helmet appear. 
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Helmet provided for Churn intervention, and player wins: 

 

 

Helmet not provided, and player loses: 

 

 

 

 

Congratulations! You have completed all of the activities. 
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This glossary contains terms relevant to your experiment in Azure ML. 

 Accuracy: measures how good a classification model performs as the proportion of true results to 

total cases 

 AUC: area under the curve plotted with true positives on the y axis and false positives on the x axis. 

This metric is useful because it provides a single number that lets you compare models of different 

types. 

 Decision Tree / Boosted Decision Trees: a type of classification algorithm 

 Experiment: the core working environment in Azure Machine Learning 

 False Positive: a test result that detects a condition when that condition is not present 

 ML: machine learning 

 Precision: the proportion of true results over all positive results 

 Recall: the fraction of all correct results returned by the model 

 ROC: Receiver Operator Characteristic 

 SMOTE: Synthetic Minority Oversampling Technique used to enhance small sample sizes 

 Support Vector Machine (SVM): a type of classification algorithm 

 True Positive: a test result that detects a condition when that condition is present 

 Web Service: a standardized way of integrating web applications over the internet 

AZURE MACHINE LEARNING GLOSSARY 
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Terms of Use 
© 2015 Microsoft Corporation.  

All rights reserved.  

By using this material, you agree to the following terms: The technology/functionality described in this lab is provided 

by Microsoft Corporation in a “sandbox” testing environment in order to provide you with a learning experience. You 

may only use the lab to evaluate such technology features and functionality and provide feedback to Microsoft. You 

may not use it for any other purpose. You may not modify copy, distribute, transmit, display, perform, reproduce, 

publish, license, create derivative works from, transfer, or sell this lab or any portion thereof.  

 

COPYING OR REPRODUCTION OF THE LAB (OR ANY PORTION OF IT) TO ANY OTHER SERVER OR LOCATION FOR 

FURTHER REPRODUCTION OR REDISTRIBUTION IS EXPRESSLY PROHIBITED. THIS LAB PROVIDES CERTAIN SOFTWARE 

TECHNOLOGY/PRODUCT FEATURES AND FUNCTIONALITY, INCLUDING POTENTIAL NEW FEATURES AND CONCEPTS. 

THE TECHNOLOGY/CONCEPTS REPRESENTED IN THIS LAB MAY NOT REPRESENT FULL FEATURE FUNCTIONALITY 

AND MAY NOT WORK THE WAY A FINAL VERSION MAY WORK. WE ALSO MAY NOT RELEASE A FINAL VERSION OF 

SUCH FEATURES OR CONCEPTS. YOUR EXPERIENCE WITH USING SUCH FEATURES AND FUNCITONALITY IN A 

PHYSICAL ENVIRONMENT MAY ALSO BE DIFFERENT.  

FEEDBACK If you give feedback about the technology features, functionality and/or concepts described in this lab to 

Microsoft, you give to Microsoft, without charge, the right to use, share and commercialize your feedback in any way 

and for any purpose. You also give to third parties, without charge, any patent rights needed for their products, 

technologies and services to use or interface with any specific parts of a Microsoft software or service Terms of Use 

that includes the feedback. You will not give feedback that is subject to a license that requires Microsoft to license its 

software or documentation to third parties because we include your feedback in them. These rights survive this 

agreement.  

 

MICROSOFT CORPORATION HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE LAB, 

INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR 

STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. MICROSOFT DOES NOT MAKE 

ANY ASSURANCES OR REPRESENTATIONS WITH REGARD TO THE ACCURACY OF THE RESULTS, OUTPUT THAT 

DERIVES FROM USE OF THE VIRTUAL LAB, OR SUITABILITY OF THE INFORMATION CONTAINED IN THE VIRTUAL LAB 

FOR ANY PURPOSE.  

 

DISCLAIMER This lab contains only a portion of the features and enhancements in Microsoft Azure Machine 

Learning, Visual Studio, and Azure App Service. Some of the features might change in future releases of the product. 


